
FEATURE

October 2019 Computer Fraud & Security
11

the method that enables security teams
to do more with less.

By reducing the day-to-day workload
of team members through improved
intelligence and reporting, streamlined
workflows and playbooks for automated
response actions, SOAR can enable those
skilled cyber security professionals to put
their talents and knowledge to better
use. Empowered by accurate, relevant
metrics that quantify the efforts of the
SOC, SOAR not only highlights areas
of improvement or shortfalls, but creates
a compelling business case for greater
investment within the security team.

About the author
As a vice president and managing director
of EMEA, Ross Brewer has nearly 30 years

of sales and management experience, with
more than 20 years in the information
security sector. At LogRhythm he leads the
EMEA team and has been key in helping
deliver consistent, rapid growth in the region.
He is regularly quoted in national and
trade press, including the BBC, The Times,
Infosecurity Magazine and The Register. He
is also frequently featured as a cyber security
expert on TV and radio, with appearances
on BBC News and BBC Radio to discuss
breaking news and provide expert insight
into cyber security incidents. Before joining
LogRhythm, Brewer was a senior executive
at LogLogic, where he served as vice president
and managing director of EMEA. He’s also
held key leadership roles in Europe and the
South-Pacific region at NetIQ, PentaSafe
and Symantec.

References

1. ‘Cyberthreat Defense Report’.
CyberEdge, 2018. Accessed
Sep 2019. https://cyber-edge.com/
wp-content/uploads/2018/03/
CyberEdge-2018-CDR.pdf.

2. ‘The Role of Regulations in
Enterprise Cyber security’.
Aberdeen Group, 22 Mar 2017.
Accessed Sep 2019. www.aber-
deen.com/techpro-essentials/
role-regulations-enterprise-cyber
security/.

3. ‘The Cost of Cloud Expertise
Report’. Rackspace, 2017. Accessed
Sep 2019. www.rackspace.com/
resources/cost-cloud-expertise-
report.

A source code per-
spective framework
to produce secure
web applications

Mamdouh AleneziAlka Agrawal

Rajeev KumarRaees Ahmad Khan

Software companies need to make sure
that their developers write more secure
code in the first place. Executives should
prioritise writing secure code up front.
And the organisation should revise its life-
cycle approach in order to include secu-
rity professionals in the loop just after the
project requirements get determined.

Vulnerable applications are the bane

of the software industry. The only boon
is to shift security from being exclusive
to being inclusive. By integrating secu-
rity teams within development teams,
software companies will get earlier feed-
back on the security of their software
or applications, thus reducing the costs
associated with implementing these fixes.
The budget to remove defects, including

security flaws, can be hundreds of times
higher after deployment. Therefore, there
is a need to shift security from reactive
to proactive, supported by appropriate
techniques. Shifting security to the left
will help to achieve the goal of releasing
secure web applications. There is a need
to embed security into the workflow.

Many existing secure coding practices
are actually more focused on ethical
hacking and penetration testing that is
separate from software development.
Developers do not have the time to learn

Alka Agrawal, BBA University; Mamdouh Alenezi, Prince Sultan University;
Rajeev Kumar, BBA University; and Raees Ahmad Khan, BBA University

Hackers and other cyber attackers remain fearless concerning the mitigation mecha-
nisms that have evolved for addressing security over the past few years. Cyber
attacks are on the rise and countless security breaches take place daily. It is believed
that cybercrime in its various forms will cost the world $6tr per year by 2021.1 It
has become essential that software companies evaluate their businesses to identify
application security needs, strategies and weaknesses. Establishing a security policy
to safeguard their software applications has become an urgent need.

https://cyber-edge.com/wp-content/uploads/2018/03/CyberEdge-2018-CDR.pdf
https://cyber-edge.com/wp-content/uploads/2018/03/CyberEdge-2018-CDR.pdf
https://cyber-edge.com/wp-content/uploads/2018/03/CyberEdge-2018-CDR.pdf
http://www.aber�deen.com/techpro-essentials/
http://www.aber�deen.com/techpro-essentials/
http://www.aber�deen.com/techpro-essentials/
http://www.rackspace.com/resources/cost-cloud-expertise-report
http://www.rackspace.com/resources/cost-cloud-expertise-report
http://www.rackspace.com/resources/cost-cloud-expertise-report

FEATURE

Computer Fraud & Security October 2019
12

a whole new technical field. To even
approximate bulletproof source code,
analysts, designers, programmers and
project leaders need to imagine every-
thing that could go wrong with every
aspect of the source code. However,
while it is impractical to forecast all the
curveballs the hacker will throw, devel-
opers can make an effort to minimise the
attack surface, plug holes and prepare for
the side effects of a probable breach.

“There is a need to shift
security from reactive to pro-
active, supported by appro-
priate techniques. Shifting
security to the left will help
to achieve the goal of releas-
ing secure web applications”

Given the rise in security breaches, soft-
ware companies should consider develop-
ment as synonymous with secure software
development. Designing for security and
the use of secure practices and standards
does not guarantee security, but it helps
in delivering secure software. Many vul-
nerabilities stem from relatively negligible
coding errors and many research findings
have shown that the majority of vulner-
abilities are related to programming errors
that are fairly well understood.

Why secure coding?

As the world becomes more intercon-
nected through the use of faster and
larger digital networks, the software
industry is continuously trying to
enhance mechanisms to protect applica-
tions against cyber attacks. Recently,
Facebook discovered a cyber attack
where attackers exploited a vulnerability
in its code that might have potentially
impacted 50 million accounts.

Despite many innovative and advanced
cyber security mitigation techniques,
everyday hackers and attackers are find-
ing ways to push data breach statistics
to a new height. According to a report
by E&T editorial staff on 4 January
2019, hundreds of high-profile German

politicians and other public figures have
been affected by a major data breach,
as a result of which their personal data
were published online. The leaked data
included personal phone numbers, email
addresses, work correspondence, family
conversations, holiday photos, photos of
ID cards, bank account information and
copies of identity cards.2,3

In another example, a criminal attack
affecting bookings made on British
Airways’ website and app resulted in
financial and personal data being stolen
from potentially hundreds of thousands
of customers in 2018.4 In the same year,
online fashion store Shein announced a
security breach that affected around 6.42
million of its customers by compromis-
ing their email addresses and encrypted
passwords for online store accounts. This
year has seen an inordinate number of
cyber security meltdowns.

“There have always been
several schools of thought
about the need to securely
code, but consistent, tangi-
ble ways have not yet been
clearly established”

Many of 2017’s data breaches
occurred at the hands of cyber criminals
who leveraged security issues with data
storage, misconfigured security settings,
and the overall lack of security solution
in place to protect data.5,6 Data breaches
in 2016 were making national headlines
every other week with two of the largest
breaches in history, including a mas-
sive hack at the Democratic National
Committee as well as breaches in health-
care, point-of-sale systems and the feder-
al sector. In the same year, Yahoo! cap-
tured the record for the largest breach,
in September 2016 when 500 million
customer records were exposed – and
then went on to break its own record by
revealing that the true figure was dou-
ble that amount.7,8 In the first half of
2015, a total of 880 data breaches were
recorded, which was a 10% increase on
2014’s record. The biggest data breach

of 2015 was against Anthem, the health
insurer, in which the data of more than
80 million people was compromised.9

Code reviews

Initially, the solution to securing source
code was simply the use of code reviews.
But a code review is a process without a
specific deliverable to a customer, and it
often becomes a collaborative effort with-
out a leader or an owner. The process
of code review finds bugs, rather than
finding security flaws. There have always
been several schools of thought about
the need to securely code, but consistent,
tangible ways have not yet been clearly
established.10,11 Secure coding should be
as important to software industry culture
as it is to the overall software develop-
ment process. The only aim of this cul-
tural shift is to instil security practices so
intensive that they become second nature.
Poor code equals insecure code. During
the development process, insecure coding
practices that stem from behaviours and
bad habits might lead to vulnerabilities in
the source code.

Source code is a sort of digital
genome that defines the properties of
software and elaborates how it func-
tions. Compromised sensitive data is a
consequence of a security failure. Often,
sensitive data is compromised through
vulnerable source code. Addressing
source code security has become exceed-
ingly unmanageable. It has been revealed
from various studies that 20% of vulner-
abilities pose 80% of the risk for source
code. There will be a debate about the
actual causes of such a severe security
breach. The tremendous rise in the
number of software vulnerabilities has
been exploited in recent years.

A significant number of vulnerabil-
ities have been traced back to coding
errors. Source code vulnerability is
highly technical. The US Department
of Homeland security noted that 90%
of security breaches happen because
of vulnerabilities in the code. More
importantly, a time has come when the

FEATURE

October 2019 Computer Fraud & Security
13

software industry should think about
having security heavily integrated into
its core culture.

Bad and insecure coding practice
remains prevalent to this day. Software
industries should take charge and priori-
tise security in the development process.
By eradicating bad code, the industry will
not only help software developers do a
better job, but also potentially secure their
reputation, data and ongoing survival.

Where is the gap?

The adoption of web application securi-
ty solutions by the software industry has
left much to be desired. For intruders,
web application attacks have become
one of the most frequent and successful
patterns in confirmed breaches. Software
companies are spending billions of dol-
lars on securing the network, perimeter
and hardware. In today’s race to build
cutting-edge business solutions, the
inclusion of a fast development cycle
using third-party software or open
source software introduces a new layer
of risk that needs to be addressed imme-
diately to secure the application from
a data breach. There has never been a
better or more necessary time to invest
in protecting web applications than right
now. Therefore, the highest security
standards should be the key highlight of
the web application development process
in any software company.

“Source code vulnerability
is highly technical. The US
Department of Homeland
Security noted that 90% of
security breaches happen
because of vulnerabilities
in the code”

Application-level security is increas-
ingly coming under fire. Software firms
are making efforts with regards to
security breach mitigation. But in spite
of investing huge budgets for securing
applications, data continues to be
compromised at an alarming rate.

Recurrently, sensitive data is compro-
mised through insecure source code.
With data breaches, the discussion
begins with the stolen data and indus-
try efforts to cover up the breach but
nobody talks about the reason for the
breach. The reason is very simple. If the
company that suffered the breach admits
that it lacked important security fea-
tures, which is why the breach occurred,
it might lose customers. Instead of
discussing what has happened, there is
an urgent need to demonstrate what
is wrong with the application software
and efforts should be made to provide a
solution. This allows a positive feedback
loop between security and developers,
demonstrated by clear recommendations
to improve application security.

“The basic problem with the
software industry is that
secure development prac-
tices have not been accepted
yet as a revenue-generating
function. This is one of the
strongest reasons why soft-
ware firms don’t bother to
train their developers to
write secure code”

In the literature, several security ini-
tiatives and methodologies have been
proposed to support the integration of
security with the development lifecy-
cle.12-16 But, unfortunately, vulnerabili-
ties persist.17 The reasons cited in the
literature are conflicting. The persistence
of vulnerabilities in software applications
might be because of the lack of proper
security guidelines or the ignorance of
these guidelines by software companies.
Another school of thought believes
that developers lack knowledge or they
might lack the ability or proper expertise
to identify vulnerabilities despite hav-
ing security knowledge.18-21 Tools are
another pain point for developers who
want to write secure code.

Protecting software applications from
theft and attack has been a time-proven
practice. The basic problem with the

software industry is that secure develop-
ment practices have not been accepted
yet as a revenue-generating function.
This is one of the strongest reasons why
software firms don’t bother to train
their developers to write secure code. As
a result, software firms do not allocate
budget for security technologies until
after a successful attack. Unfortunately,
fixing bugs and flaws post-attack is very
expensive and reputations have already
been damaged.

Recent developments

A review of research journals revealed few
articles covering the area of writing more
secure web applications. Many books,
journals, research articles and online
materials cover allied topics, but not this
exact one. The works cited in the litera-
ture span from the simplest web page
on the topic to full courses. The most
specific problem during a review of the
work on the topic was to navigate the vast
size of the fragmentary information and
to find what is relevant to the subject of
writing secure source code, as the material
does not use a uniform approach. Some
of the most relevant work and influences
cited in the literature are as follows.

Nunes et al in 2018 proposed a bench-
mark for assessing and comparing static
analysis tools in terms of their capability
to detect security vulnerabilities.22 The
benchmark proposed was implemented
and assessed experimentally using a set
of 134 WordPress plugins. The authors
advocated the classification of vulner-
abilities. In the same year, Smith et al
carried out a study on the defect resolu-
tion process to build better security tools
and subsequently help developers resolve
defects more accurately and efficiently.23
The authors reported on an exploratory
study with novice and experienced soft-
ware developers, equipping them with a
security-oriented static analysis tool.

In 2017, Awan et al proposed a
security framework that identifies
vulnerabilities and observes the traf-
fic between the browser and the

FEATURE

Computer Fraud & Security October 2019
14

server.24 This also takes control of the
request and its response. The authors
implemented advanced discovery and
fuzzing technologies to discover the
vulnerability. The objective of the
framework was to enhance the security
of important national ID databases.
In the same year, Holík and Neradova
presented a process of penetration test-
ing of web applications.25 Their goal
was to detect application flaws and
vulnerabilities and to propose a solu-
tion to mitigate them. The authors
analysed current penetration testing
tools and subsequently tested them on
a use case web application, build spe-
cifically with current security flaws.

“Several security tools and
suites of tools are available
today to assist the design
and development of secure
code. However, no formal
evaluation of any of these
tools has been undertaken”

In 2016, Alenezi and Yasir tested
several open source web applications
against common security vulnerabilities
categorised as ‘dodgy code vulnerabil-
ities’, ‘malicious code vulnerabilities’
and ‘security code vulnerabilities’ on
seven different web applications built in
Java.26 The results obtained revealed the
fact that hasty programming or lack of
developer knowledge concerning security
causes major vulnerabilities in source
code. In the same year, Alenezi and Yasir
worked on educating developers and
helping them to produce more secure
code, and they proposed a framework
that can be integrated into any develop-
ment environment.27

An exhaustive review of recent devel-
opments reveals that, over the years,
security experts’ efforts have been
invested in specific methodologies and
techniques for delivering secure soft-
ware. Several security tools and suites
of tools are available today to assist the
design and development of secure code.
However, no formal evaluation of any of

these tools has been undertaken. A dedi-
cated process in the form of a framework
for writing secure code with support in
order to meet security requirements is
urgently and genuinely required.

The framework

It is a well-established fact that source
code will always have vulnerabilities,
irrespective of time, effort and the tech-
niques used to develop a secure soft-
ware application. But it is always pos-
sible to evolve a mechanism that, when
followed, will minimise the overall vul-
nerabilities in the source code and make
those that remain harder to exploit.
Writing secure code is challenging
and more demanding because a large
proportion of security incidents result
from flaws in the source code. There is
still room for the software industry and
state of the art to evolve to provide a
better standard mechanism that can be
applied across software organisations
more uniformly.

To encourage developers to write
secure source code, there is a need to
integrate the whole process of scan-
ning, detecting and mitigating security
vulnerabilities and flaws during source
code analysis. Taking into account the
need and significance of a roadmap or
framework for developing secure source
code with essential and desirable security
features, an integrated and prescrip-
tive framework is hereby proposed. We
have attempted to make the proposed
framework highly implementable and
prescriptive in nature.

The development process for secure
source code is comprised of three
phases together with prescriptive steps
for each. Such a framework has been
proposed on the basis of integral and
basic components for writing secure
source code for a web application.
Figure 1 shows a general overview of
the framework. The first phase starts
with ‘execute and monitor’ to produce
the vulnerabilities and flaws data repos-
itory. The classification of vulnerabili-
ties and flaws and the prioritisation of
identified vulnerabilities is treated as an
important task and has been put forth
as a second phase, ‘classify and control’.
In the third phase of ‘refine and man-
age’, all data repositories of source code
will be merged into a single repository,
and a suggested measure in the form of
prioritised secure source code writing
guidelines is produced for ready refer-
ence by web application developers. An
attempt has been made to symbolically
represent the concept of writing secure
source code and make the framework
prescriptive in nature followed by a
brief description of each of the phases
comprising the depicted steps.

Phase I: Execute and
monitor
This phase starts with scanning the
source code using analysers. A dataflow
analyser detects the flow of malicious
data. The semantic analyser searches
vulnerable functions used in the source
code. The control flow analyser tracks
the sequence of operations to detect

Figure 1: A general overview of the proposed framework.

FEATURE

15
October 2019 Computer Fraud & Security

improper coding constructs. Finally,
the configuration analyser parses and
analyses the application deployment.
Practitioners will verify identified vul-
nerabilities and flaws. Identified blacklist
code and whitelist code will be docu-
mented. Prescriptive steps involved in
executing and monitoring the source
code are shown in Figure 2.

Phase II: Classify and
control
This phase classifies the identified
security vulnerabilities and flaws into
three categories – namely access control
vulnerabilities, information flow vulner-
abilities and application programming
interface (API) conformance. Now, these
classified vulnerabilities will be priori-
tised according to their severity levels to
reduce the cost and time during mitiga-
tion as per the priority list.

Prioritised vulnerabilities will be
checked with three indexes – high,
medium or low. In order to mitigate
vulnerabilities bearing a high sever-
ity level, the code will be repaired or
blocked. Vulnerabilities with a medium
severity level will be passed through the
procedure to calculate the probability
of exploitation. If the probability is
high, it will be treated as a vulnerability
with a high severity level and will be
mitigated accordingly. If the probability
of exploitation is low, it comes under
the category of vulnerabilities with low
severity and will be addressed by fixing
through suggested measures. Finally,
an analysis summary report will be pre-
pared summarising the actions associated
with the source code. The prescriptive
steps in classifying and controlling the
source code analysis process are shown
in Figure 3.

Phase III: Refine and
manage
After successful implementation of
Phase II, all the repositories of source
code will be merged into a single

Figure 2: Phase I – execute and monitor.

Figure 3: Phase II – classify and control.

Figure 4: Phase III – refine and manage.

FEATURE

Computer Fraud & Security October 2019
16

repository. Again, source code will be
analysed manually. Identified logi-
cal errors and flaws will be mitigated
through the suggested measures pro-
vided. Further, rule violations will be

identified and reduced by enforcing
secure coding rules in interactive envi-
ronments. Prescriptive steps in refining
and managing the source code analysis
process are shown in Figure 4.

Once the source code analysis process
meets the exit criteria based on time,
cost and objectives, source code analysis
will be finalised and will start facilitating
a secure software development lifecycle.
An integrated and prescriptive frame-
work for securing web application source
code is shown in Figure 5.

Significance of the
framework
One of the most pertinent approaches
for delivering secure code is vulnerabil-
ity scanning of source code. This prac-
tical approach is currently adapted by
most security practitioners. In essence,
the integration of security strategies as
a security framework while writing the
source code would allow any security
anomalies to be detected and fixed
well before the software application is
released. The framework will also allow
the code to be audited for conformance
which, as a result, will not only pro-
vide greater security but will also save
time, cost and resources that might be
incurred on redevelopment or patching
of the software application once it is
released.

“Experimental deployments
and statistical analyses on
a large scale with typical
representative samples may
be needed to standardise
the framework”

The objective of the framework pro-
posed is to be relentlessly practical. The
framework will not only enable the
developer to make the source code more
secure but also to make the code more
robust and reliable. We are confident
that implementing all the three phases
of the proposed framework will ensure
commercial and public trust in the
secure web application development pro-
cess, reducing time, costs and effort.

Implementation of the conceptual
framework proposed will help security
experts and programmers identify flaws

If
Vulnerability

& Flaws
Found ?

Yes No
Data Repository

(DR1)

Verification of
Warnings

Dataflow Analyser

Scan the Source Code through Analyser
(Vulnerability & Flaws Databases)

Semantic Analyser Control Flow Analyser Configuration Analyser

Detects the Flow of
Malicious Data

Searches for
Vulnerable Functions

Used in the Code

Tracks the Sequence of
Operations to Detect

Improper Coding Constructs

Parses and Analyses the
Application Deployment /
Environment Settings in

Configuration Files

Scan Scan Scan Scan

Vulnerability & Flaws Identification

Data Repository
(DR11)

Data Repository
(DR12)

Data Repository
(DR13)

If
High

If
Medium

(Prioritising)
V111
V112

.

.

(Prioritising)
V121
V122

.

.

(Prioritising)
V121
V122

.

.

If
Low

If
High

If
Medium

If
Low

Problem fixing through
suggested measures

Mitigate security vulnerability
through repairing or blocking

the code

Mitigate security vulnerability
through repairing or blocking

the code

Yes

No

No

Yes

No

No

No

Yes

Yes

Data Repository
(DR3)

Calculate the probability
of exploitation

If
Probability

High

Low

Yes

No

Calculate the probability
of exploitation

Yes

If
Probability

Problem fixing through
suggested measures

High

Low

If
High

If
Low

Mitigate security vulnerability
through repairing or blocking

the code

No

No

No

Yes

Calculate the probability
of exploitation

If
Probability

Problem fixing through
suggested measures

Low

If
Medium

Yes

High

Yes

Access Control
Vulnerabilities

Information Flow
Vulnerabilities

Application Programming Interface
(API) Conformance

Vulnerability & Flaws Classification

Finalization & Packaging

Refine Coding Guidelines

If
Vulnerability

& Flaws
Found ? Yes

No Reduce Rule Violations by Enforcing Secure
Coding Rules in Interactive Environments

Rules
Violations

Yes

No

Prioritized Coding Guidelines

Data Repository
(DR4)

Software Development Lifecycle

Facilitate

Review & Revision

Data Repository
(DR2)

Figure 5: A framework to secure web application source code.

FEATURE

October 2019 Computer Fraud & Security
17

in source code and find the best mitiga-
tion approach. In the absence of any
other framework, it may be used by
web application source code developers
across the community and, if it becomes
a standard, may be improved in terms of
security. Further, experimental deploy-
ments and statistical analyses on a large
scale with typical representative samples
may be needed to standardise the frame-
work. A close look at the components
constructing the theoretical framework
related to secure code writing led to the
following observations:
• The framework proposed avoids

writing secure code with a subjective
rating such as ‘very low’, ‘low’, ‘aver-
age’, ‘high’, ‘very high’ etc.

• The framework helps to evaluate
secure source code and provides cost
estimates of writing secure code,
which facilitates the estimation and
planning of new activities.

• The framework will be able to iden-
tify faulty and vulnerable code early
to decrease the amount of reworking.

• Viable experiments should be
designed to validate the proposed
framework.

• Pre-deployments and deployments
should be conducted on the pro-
posed framework and the results
gained from these uses should be
analysed and interpreted.

• Informal reviews and revisions
should be carried out throughout
entire phases of the secure develop-
ment process.

Conclusion

This article proposes a three-step
framework to produce secure web
applications. The framework helps in
identifying the types of security vulner-
abilities that arise due to programmers’
mistakes. It also finds the reason for the
occurrence of these mistakes. Successful
implementation of the proposed frame-
work will identify and mitigate the
vulnerabilities in source code and give
suggested methods for writing secure

code. In future work, the implemented
framework will be empirically validated
through the implementation of different
web application projects.

About the authors
Dr Alka Agrawal earned her doc-
toral degree from Babasaheb Bhimrao
Ambedkar University, Lucknow, India
and she is currently working as an assis-
tant professor in the same department.
She is a passionate researcher and has also
published a number of research papers
in national and international journals.
She has research and teaching experience
of more than eight years. Her areas of
research include software security and soft-
ware vulnerability. She is currently work-
ing in the fields of big data security and
genetic algorithms.

Dr Mamdouh Alenezi is currently dean
of educational services and chief informa-
tion & technology officer (CITO) at Prince
Sultan University, Riyadh, Saudi Arabia.
He received his MS and PhD degrees from
DePaul University and North Dakota
State University in 2011 and 2014,
respectively. He has extensive experience in
data mining and machine learning, where
he applied data mining techniques to solve
several software engineering problems. He
conducted research in several areas and
worked on the development of predictive
models using machine learning to predict
fault-prone classes, comprehend source code
and predict the appropriate developer to be
assigned to a new bug.

Dr Rajeev Kumar obtained his PhD
in information technology at Babasaheb
Bhimrao Ambedkar University,
Lucknow and he completed his Master’s
in information technology from the same
university in 2014. He has worked on
a full-time major project funded by the
University Grants Commission, New
Delhi, India. He has also published and
presented papers in refereed journals and
conferences. His research interests are
software security, software durability and
security risk.

Prof Raees Ahmad Khan is currently
working as a professor and head of depart-

ment in the Department of Information
Technology and as dean of the school for
information science and technology at
Babasaheb Bhimrao Ambedkar University,
Lucknow. Khan has more than 18 years of
teaching and research experience. His areas
of interest are software security, software
quality and software testing. He has pub-
lished a number of national and interna-
tional books (including Chinese language),
technical articles, research papers, reviews
and chapters on these topics.

Acknowledgment
The authors are thankful to the College
of Computer and Information Sciences,
Prince Sultan University, for providing
the funding to carry out this work.

Resources
• Koussa, Sherif. ‘Why don’t devel-

opers write more secure code?’.
Software Secured, 20 Jun 2016.
Accessed Jan 2019. www.software-
secured.com/why-dont-developers-
write-more-secure-code/.

• Kanat-Alexander, Max. ‘Why
Programmers Suck’. Code Simplicity,
1 Dec 2009. Accessed Jan 2019.
www.codesimplicity.com/post/why-
programmers-suck/.

References
1. Kobek, Luisa Parraguez. ‘The State

of Cyber security in Mexico: An
Overview’. Wilson Centre’s Mexico
Institute, Jan 2017. Accessed Jan
2019. www.wilsoncenter.org/sites/
default/files/cybersecurity_in_mexi-
co_an_overview.pdf.

2. ‘Top German politicians affected in
major data breach’. The Institution
of Engineering & Technology,
4 Jan 2019. Accessed Jan 2019.
https://eandt.theiet.org/content/
articles/2019/01/top-german-politi-
cians-affected-in-major-data-breach/.

3. ‘The most infamous data breaches’.
Techworld, 4 Jan 2019. Accessed
Jan 2019. www.techworld.com/
security/uks-most-infamous-data-
breaches-3604586/.

http://www.software�secured.com/why-dont-developers-write-more-secure-code/
http://www.software�secured.com/why-dont-developers-write-more-secure-code/
http://www.software�secured.com/why-dont-developers-write-more-secure-code/
http://www.software�secured.com/why-dont-developers-write-more-secure-code/
http://www.codesimplicity.com/post/why-programmers-suck/
http://www.codesimplicity.com/post/why-programmers-suck/
http://www.wilsoncenter.org/sites/default/files/cybersecurity_in_mexi�co_an_overview.pdf
http://www.wilsoncenter.org/sites/default/files/cybersecurity_in_mexi�co_an_overview.pdf
http://www.wilsoncenter.org/sites/default/files/cybersecurity_in_mexi�co_an_overview.pdf
http://www.wilsoncenter.org/sites/default/files/cybersecurity_in_mexi�co_an_overview.pdf
https://eandt.theiet.org/content/articles/2019/01/top-german-politi�cians-affected-in-major-data-breach/
https://eandt.theiet.org/content/articles/2019/01/top-german-politi�cians-affected-in-major-data-breach/
https://eandt.theiet.org/content/articles/2019/01/top-german-politi�cians-affected-in-major-data-breach/
https://eandt.theiet.org/content/articles/2019/01/top-german-politi�cians-affected-in-major-data-breach/

FEATURE

Computer Fraud & Security October 2019
18

4. Venkat Raman, Rama. ‘Data sto-
len from hundreds of thousands of
British Airways customers in major
breach’. Business Insider, 7 Sep
2018. Accessed Jan 2019. www.
businessinsider.com/british-airways-
customer-data-stolen-2018-9?IR=T.

5. Hay Newman, Lily. ‘The biggest
cyber security disasters of 2017 so
far’. Wired, 7 Jan 2017. Accessed
Dec 2018. www.wired.com/
story/2017-biggest-hacks-so-far/.

6. Rubens, Arden. ‘Recap: The biggest
data breaches of 2017’. Checkmarx,
31 Dec 2017. Accessed Jan 2019.
www.checkmarx.com/2017/12/31/
recap-biggest-data-breaches-2017/.

7. Kuranda, Sarah. ‘The 10 biggest
data breaches of 2016’. CRN, 28
Dec 2016. Accessed Jan 2019.
www.crn.com/slide-shows/secu-
rity/300083246/the-10-biggest-data-
breaches-of-2016.htm.

8. Fischer, Thomas. ‘The biggest
and most impactful data breaches
of 2016’. Data Insider, 19 Jan
2017. Accessed Jan 2019. https://
digitalguardian.com/blog/biggest-
and-most-impactful-data-breach-
es-2016.

9. Bihary, Chris. ‘Cyber security year
in review: major data breaches of
2015’. TAP into Technology, 15
Dec 2015. Accessed Dec 2018.
www.garlandtechnology.com/blog/
cyber-security-year-in-review-major-
data-breaches-of-2015.

10. Grover, Mark; Cummings, Jeff;
Janicki, Thomas. ‘Moving beyond
coding: why secure coding should
be implemented’. Journal of
Information Systems Applied
Research, Vol.9, Issue 1, pp.38-46,
April 2016.

11. Hentzen, Shil. ‘The Software
Developer’s Guide’. Whitefish Bay:
Hentzenwrke Publications, 2002.

12. Assal, Hala; Chiasson, Sonia; Biddle,
Robert. ‘Cesar: Visual representation
of source code vulnerabilities’. In
IEEE Symposium on Visualization
for Cyber Security, 2016.

13. Backes, Michael; Rieck, Konrad;
Skoruppa, Malte; Stock, Ben;
Yamaguchi, Fabian. ‘Efficient and
flexible discovery of PHP appli-
cation vulnerabilities’. In IEEE
European Symposium on Security
and Privacy, 2017.

14. Chess, Brian; McGraw, Gary. ‘Static
Analysis for Security’. IEEE Security
& Privacy, Vol.2, Issue 6, pp.76-79,
2004.

15. Antunes, Nuno; Vieira, Marco.
‘Defending against web application
vulnerabilities’. Computer, Vol.45,
Issue 2, pp.66-72, 2012.

16. Smith, Justin; Johnson, Brittany;
Murphy-Hill, Emerson; Chu,
Bill; Richter Lipford, Heather.
‘Questions developers ask while
diagnosing potential security vul-
nerabilities with static analysis’. In
Joint Meeting on Foundations of
Software Engineering. ACM, 2015.

17. Oliveira, Daniela; Rosenthal,
Marissa; Morin, Nicole; Yeh, Kuo-
Chuan; Cappos, Justin; Zhuang,
Yanyan. ‘It’s the psychology stupid:
how heuristics explain software vul-
nerabilities and how priming can
illuminate developers’ blind spots’.
In 30th Annual Computer Security
Applications Conference, pp.1-10,
2014.

18. Assal, Hala; Chiasson, Sonia.
‘Motivations and amotivations
for software security’, Usenix
Symposium on Usable Privacy and
Security (SOUPS) 2018. August
12-14, 2018, Baltimore, MD, US.

19. Green, Matthew; Smith, Matthew.
‘Developers are not the enemy!: The
need for usable security APIs’. IEEE
Security Privacy, Vol.14, Issue 5,
pp.1-9, 2016.

20. Greenberg, Andy. ‘Hackers remotely
kill a Jeep on the highway – with
me in it’. Wired, 21 Jul 2015.
Accessed Jan 2019. www.wired.
com/2015/07/hackers-remotely-kill-
jeep-highway/.

21. Grieco, Gustavo; Grinblat,
Guillermo Luis; Uzal, Lucas; Rawat,

Sanjay; Feist, Josselin; Mounier,
Laurent. ‘Toward large-scale vul-
nerability discovery using machine
learning’. In ACM Conference on
Data and Application Security and
Privacy, 2016.

22. Nunes, Paulo; Medeiros, Ibéria;
Fonseca, José C.; Neves, Nuno;
Correia, Miguel; Vieira, Marco.
‘Benchmarking static analysis
tools for web security’. IEEE
Transactions on Reliability,
Vol.67, Issue 3, pp.1159-1175,
2018.

23. Smith, Justin; Johnson, Brittany;
Murphy-Hill, Emerson; Chu, Bei-
Tseng; Richter, Heather. ‘How
developers diagnose potential secu-
rity vulnerabilities with a static
analysis tool’. IEEE Transactions on
Software Engineering, Early Access,
2018.

24. Awan, Jawad Hussain; Memon,
Shahzad; Khan, Shariq Mahmood;
Usman, Muhammad; Khan, Rahat
Ali; Abbasi, Shazia; Noonari, Abdul
Qudoos; Hussain, Zahoor. ‘A user
friendly security framework for the
protection of confidential infor-
mation’. International Journal of
Computer Science and Network
Security, Vol.17, Issue 4, pp.215-
223, 2017.

25. Holík, Filip; Neradova, Sona.
‘Vulnerabilities of modern web
applications’. 40th International
Convention on Information and
Communication Technology,
Electronics and Microelectronics
(MIPRO), IEEE, 2017.

26. Alenezi, Mamdouh; Yasir, Javed.
‘Open source web application secu-
rity: a static analysis approach’.
Engineering & MIS (ICEMIS),
International Conference, IEEE,
2016.

27. Alenezi, Mamdouh; Yasir, Javed.
‘Developer companion: a frame-
work to produce secure web appli-
cations’. International Journal of
Computer Science and Information
Security, 2016.

http://www.businessinsider.com/british-airways-customer-data-stolen-2018-9?IR=T
http://www.businessinsider.com/british-airways-customer-data-stolen-2018-9?IR=T
http://www.businessinsider.com/british-airways-customer-data-stolen-2018-9?IR=T
http://www.wired.com/story/2017-biggest-hacks-so-far/
http://www.wired.com/story/2017-biggest-hacks-so-far/
http://www.checkmarx.com/2017/12/31/recap-biggest-data-breaches-2017/
http://www.checkmarx.com/2017/12/31/recap-biggest-data-breaches-2017/
http://www.crn.com/slide-shows/secu�rity/300083246/the-10-biggest-data-breaches-of-2016.htm
http://www.crn.com/slide-shows/secu�rity/300083246/the-10-biggest-data-breaches-of-2016.htm
http://www.crn.com/slide-shows/secu�rity/300083246/the-10-biggest-data-breaches-of-2016.htm
http://www.crn.com/slide-shows/secu�rity/300083246/the-10-biggest-data-breaches-of-2016.htm
https://digitalguardian.com/blog/biggest-and-most-impactful-data-breach�es-2016
https://digitalguardian.com/blog/biggest-and-most-impactful-data-breach�es-2016
https://digitalguardian.com/blog/biggest-and-most-impactful-data-breach�es-2016
https://digitalguardian.com/blog/biggest-and-most-impactful-data-breach�es-2016
https://digitalguardian.com/blog/biggest-and-most-impactful-data-breach�es-2016
http://www.garlandtechnology.com/blog/cyber-security-year-in-review-major-data-breaches-of-2015
http://www.garlandtechnology.com/blog/cyber-security-year-in-review-major-data-breaches-of-2015
http://www.garlandtechnology.com/blog/cyber-security-year-in-review-major-data-breaches-of-2015
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

